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Prerequisites  This unit assumes you are familiar with the ThinkaDot device and have solved some 
puzzles which you can obtain from A computer program by Don Love:  webster.edu/~lovedo/thinkadot 
The purpose of this unit is to develop a group structure which can be used to analyze questions related to 
ThinkaDot puzzles. The main mathematical background you need for this unit is a good understanding 
of some basic ideas about groups.  In particular we presuppose the concepts of a cyclic group, a group of 
bijective functions under composition, group generators, order, cancellation law, direct sum, morphism.  

This unit contains a supplementary appendix relating the analysis of D to the fundamental decomposition 
theorem for abelian groups.  Generator conditions for D are given without reference to the ThinkaDot 

device, and we show how these condition allow D to be decomposed into Z8xZ2xZ8.  We then indicate 
how this idea can be generalized.  A reader who is only interested this particular topic can be read the 
appendix without reference to the rest of the paper. 

Reference for Main Notation 

 Z2: the additive group of the integers (mod 2) 

 Z8: the additive group of the integers (mod 8) 

 : addition (mod 8) in most contexts 

 : ordinary addition in some contexts 

 f: marble drop function in left hole 

 g: marble drop function in middle hole 

 h: marble drop function in right hole 

 : function composition in some contexts 

 : sum of 2 groups 

 : direct sum of  2 groups  

 D: the group generated by {f, g, h} 

 P: set of thinkadot patterns resulting from D 

 ô: order of a group or group element 
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SECTION 0 THE PROBLEM 
 

The ThinkaDot Device  Recall that this device has 3 holes at the top thru which the red marble can be 
dropped.  It then falls thru gates inside the device, each set to send the marble left or right.  A marble does 
not hit a gate in level 2 when dropped thru a side hole whose gate at level 1 is set toward the wall.  Unless 
otherwise specified, it should be understood that we have started with the initial pattern in which all gates 
set to the left.  As a marble goes thru a gate it sets the gate in the opposite direction.  On the outside in 
front of each gate is a blue dot if the gate is set left or a pink dot if it is set right. Let f, g, h denote the  
marble drops thru the left hole, middle hole, right hole respectively.  The diagram below shows what you 
would see f followed by g followed by h.  

                                     


    
   
     

f 
 



       
    

       

g 
 



       
    

       

h 
 



       
    

       

 
The unseen inside gate settings are as follows. 

 

/   /   / 
/   / 

/   /   / 

f 
 
 

\  /   / 
/   / 

\   /   / 

g 
 
 

\   \   / 
\   / 

/   /   / 

h 
 
 

\   \   \ 
\   \ 

/   \   / 
 

Since any setting can be in one of 2 states, it is convenient to think in terms of bits rather than colors.  A 
zero indicates that a gate is set so a marble goes left.  A one indicates that it is set so a marble goes right.  
Thus you can think of the result of applying these marble drops in terms of the bit patterns below.  

 

0   0   0 
0   0 

0   0   0 

f 
 
 

1   0   0 
0   0 

1   0   0 

g 
 
 

1   1   0 
1   0 

0   0   0 

h 
 

1   1   1 
1   1 

0   1   0 
 
Ac00  Show the bit patterns which result from applying the sequence h, h, f, g, g.  

Main Problem  Let P denote the set of patterns which can be obtained by some sequence of marble drops.   

1. Give a simple criteria for determining when a pattern x is in P. 
2. For any xP, determine a sequence of marble drops that produces x.  
3. Find the minimum number of drops needed to obtain x and a minimal sequence that produces x.  
4. Given any other natural number j determine if x can be obtained using a sequence of exactly j 

marble drops.  If so, give such a sequence.  
 

Re00   000   h    001   h    000   f     100   g    010   g    100 
            00       01       01       01       11       10  
           000         010          011         111         011         010 
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Supplementary Problem  Let y and x be any patterns.  Is there a sequence of drops that changes y to x.  If 
so find such a sequence.  Also find the smallest number s of drops needed to obtain x from y a sequence 
of length s that does this.  Given any other natural number j determine if x can be obtained from y using a 
sequence of exactly j marble drops.  If so, give such a sequence. 

The Group D  Each of the marble drops f, g, h has a definite effect on each pattern in P, and we will also 
the symbols f, g, h to denote the functions from P to P that correspond to marble drops f, g, h.  The 
structure D of functions generated by composing zero or more of these functions is associative and has an 
identity element.   Section 1 and in Section 2 give 2 different ways of showing that each of f, g, h has 
order 8, and that these function commute.  Thus D is shown to be an abelian group.  In Section 3 we use 
the properties of this group to solve parts 3 and 4 of the main problem.  This is also relevant to part 1 of 
the main problem.  However in Section 1 we suggest a solution to part 1 which does not involve D.   

Marble Drops  Having shown that marble f and g and h all have order 8, we focus primarily on set of 
marbles involving less 8 drops thru any one hole.  We use the group Z8 Z8 Z8 to name such sets.  We 
can think of this group as acting on P, altho it will be seen that different elements of this group may 
perform the same action on P.   This suggests a morphism from Z8 Z8 Z8 onto D. 

Notation  We use additive notation for D, with left to right convention for composition.  Thus gf means 
do g then do f, while fg means do f then do g.  We also use the standard additive abbreviations.   

0: the identity function    the inverse operation,   nx: n applications of any X in {f, g, h}.   

Ac01  In the initial pattern both level 1 and level 3 are 000, so the Z2 sum of these 6 bits is 0.  What will 
the Z2 sum of these 6 bits be after 1 marble drop?  After 2 marble drops?  Explain and generalize to give a 
necessary condition for members of P.  Explain why this shows that P has at most 128 members.  Give an 
example showing that the Z2 sum of all 8 bit need not be 0.  

Overview  Section 1 presents a simple strategy for making any pattern in P.  It is based on the observation 
that we can obtain any bit pattern in level 1 using some subset of {f, g, h}, that further use of an even 
number of drops in a hole will not alter any bit setting in level 1, nor will 4 drops in a hole alter any bit 
setting in level 2.  We suggest you try to discover and describe such a strategy before reading our 
formulation of it.  This strategy yields 128 patterns, thus the necessary condition from Ac01 is also 
sufficient.  However this strategy gives only a limited type of solution to part 2 of the main problem 
because the marble drops needed can only be determined as you use them. 

Section 2 uses a code to solve part 2 of the main problem.  Unlike the solution from Section 1, this 
solution allows us to calculate the marble drops needed prior to dropping any marbles.  This solution does 
not depend on any ideas in Section 1, so you can work these sections in either order.  

Section 1 and 2 both show that D is a group with certain specific properties.  Section 3 uses these 
properties to deduce the structure of D and then relates this to the solutions to parts 3 and 4 of the main 
problem.  

Re01  Each marble drop must change exactly 1 gate in level 1 and exactly 1 gate in level 3, so the Z2 sum of these 6 bits 
remains 0 no matter how many marble drops are used.  This give a necessary condition for  patterns in P:  

xP  the bit sum in levels 1 and 3 is 0 (mod 2)  

There are 8 gates, giving 28 = 256 imaginable patterns.  Since exactly half of these imaginable patterns have 0 for the Z2 sum of 
the top and bottom levels, P has at most 128 elements.  Ac00 gave an example of a pattern in P for which the Z2 sum of all 8 
gates is not 0.  
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SECTION 1 TOP DOWN STRATEGY FOR MAKING ELMENTS OF P 

Remark  This section presents a simple strategy for making any pattern in P, using the ideas involved to 
show that D is an abelian group.  First observe that we can obtain any pattern of bits in level 1 using some 
subset of {f, g, h}, and that further use of an even number of drops will not alter these bits.  

Ac10  Starting with any pattern, 2f changes the left level 1gate twice and the left level 2 gate once.  Thus 
4f changes these gates an even number of times.  4f also changes the left 3rd level gate 3 times and the 
middle level 3 gate once.  Indicate the number of times each gate is changed by 4g.  Do the same for 4h.  

Example  Four drops thru the same hole changes gates only in level 3. This observation can be used to 
make the pattern with level 1 as 111, level 2 as 00, level 3 as 010. To obtain the desired first level of 111 
we need to change each bit, so begin with fgh.  After this the second level of 11 differs from the 
desired second level of 00 in both bits.  2g leaves level 1 alone but reverses both bits in level 2.  After 
fgh2g the third level is 001, which differs from the desired bottom level 010 in its last 2 bits.  4h 
changes these 2 bits but leaves levels 1 and 2 alone.  Thus d = fgh2g4h will give this pattern.  

   

    000  fgh   111   2g    111   4h    111 
     00             11         00         00 

     000               010           001           010 

Ac11  Apply a strategy like the above to find a function giving 101 00 011.  Do the same for 101 11 011  
and  for  001 11 010.  Before reading the strategy below, see if you can describe a this strategy. 

Top Down Strategy  The strategy just used for 111 00 010 can be used to find a element d for any of the 
128 patterns in which the Z2 sum of the level 1 and level 3 bits is 0.  First use single drops to obtain the 
desired level 1.  If level 2 needs to be changed select an element of {2f, 2g, 2h}.  If needed, select an 
element of {4f, 4g, 4h} to obtain the desired level 3.  In more detail, let x be a pattern you are to obtain.  

(1)  Create a pattern x1 by using nfkgmh where n, k, m are the left, middle, right entries in 
       the first level of x.  

(2)   Create a pattern x2 from x1 as follows:  Let y be the bit by bit Z2 sum of the second levels 
        of  x and x1.    If y = 00 do nothing.  If  y = 10 use 2f.  If  y = 11 use 2g.  If  y = 01 use 2h. 

(3)   Create the pattern x from x2 as follows:  Let z be the bit by bit Z2 sum of the third levels 
        of x and x2.    If z = 000 do nothing.  If z = 110 use 4f.  If  z = 101 use 4g.  If z = 011 use 4h.  

Remark  Step (3) can be used iff the bit sum s for z is 0, which happens iff the bit sum of all the level 1 
and level 3 bits in x and x2 is 0.  Since x2P, we have s = 0 iff xP.  Thus the necessary condition given 
earlier is sufficient.  

Solution to Main Problem Part 1    xP  the bit sum in levels 1 and 3 is 0 (mod 2)  

Remark  In finding d by the top down strategy, we first choose at most 3 drops, then at most 2 drops, then 
at most 4 drops; giving at most 9 marble drops.  The pattern 111 00 010, is an example in which using this 
strategy involves for 9 drops.  In Section 3 use the structure of D to show that this pattern cannot be 
obtained with fewer than 9 marble drops, however that there are patterns, such as 101 00 110, for which 
the top down strategy does not yield the minimal number of marble drops (see Ac13).  

 
Re10    4g : 1st  level  0 4 0,  2nd level 2, 3rd level 1 2 1          4h: 1st  level  0 0 4,  2nd level 0 2, 3rd level 0 1 3 
 

Re11   000  fh  101  2h  101  4f  101 
            00        01      00     00 
           000         110         101       011 

 000  fh  101  2f  101  4g  101 
  00        01     11      11 
 000         110        110        011 

000  h  001  2f  001 
 00    01     11 
000      010       010 
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Remark  Given any xP there is a function d such that d(000 00 000) = x, and the top down strategy gives 
a name for d.  In a sense this also solves part 2 of the main problem.   However this top down strategy 
does not allow us to predict d before dropping any marbles.  The solution to part 2 given in the Section 2 
depends on using a code which will allow us to easily describe the actions of f and h on P.  This gives a 
way to calculate d prior to any marble drops.  

We now turn some results about the algebra of D, the first of which should be apparent from Ac10.  

Notation  ô denotes the function which maps an element of D to its order.    

Ac12  Explain why ôf = 8.  Find ôg and ôh.  

Inverses  Since 8f = 0, 7f is the inverse of f.  Likewise h = 7h and g = 7g.  Thus D is a group.  

Observation  Each gate is changed 4 times by 4f4g4h; as may be seen by adding the number of gate 
changes indicated in Ac10.  From this one might suspect that 2f2g2h would change each gate twice.  In 
fact dropping 2 marbles in each hole in any order will change each gate exactly twice.  Clearly this is the 
case for each 1st level gate.  For the left gate in level 2, exactly one of the drops f will change it and 
exactly one of the drops g will change it, so it will also be changed twice.  The left gate on level 3 will be 
changed once from a marble coming from the left gate on level 1 and once from a marble coming from 
the left gate on level 2.  Similar analysis applies to the right gates on levels 2 and 3.  Since 6 marble go 
thru gates on level 3, the middle gate must also change twice.  

Claim  D is an Abelian Group.  

Proof  By the preceding observation, fgfg2h = 0 = gffg2h, giving fg = gf.  Similar reasoning 
gives gh = hg and fh = hf, so the group D is abelian.  

Remark  Since D is abelian it only the number of marble drops of each type that is relevant to obtaining a 
pattern.  For instance if x is 111 000 10 we can use f3g5h instead of fgh2g4h to obtain x.  From 
an algebraic perspective this means that f3g5h = fgh2g4h, a result which follows easily since D is 
abelian.  The fact that 8f = 0 means we could also use 9f3g5h to obtain x, and expanding on this idea 
there are an unlimited number of ways to obtain x. 

Re12  It should be clear from Ac10 that 8f changes all gates an even number of times 8f = 0.  Since 4f changes at least one gate 
an odd number of times, 4f0.  Thus ôf = 8.  Similar analysis holds for g and h.  
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SECTION 2  CALCULATING THE EFFECT OF MARBLE DROPS  

Notation  The focus of this section is to find Z8 formulas for calculating the effects of f and h.  This will 
allow us to obtain half the pattern in the possible set of patterns P.  Using one application of g along with 
these formulas will allow us to obtain the other half of the patterns in P.  We also use the ideas involved to 
show that D is an abelian group in a way that does not depend on Section 1.   

A Code For P   From Ac10 we know that for any x in P the sum of the bits in the top and bottom rows is 0 
(mod 2).  Thus the middle bit in level 3 is the (mod 2) sum of these other 5 bits.  Thus we can ignore this 
bit when trying to obtain a pattern.  This is convenient because it is the only bit affected by all 3 types of 
marble drops.  This allows us to focus only on the left side bits when examining the effect of f . and only 
on the right side bits when examining the effect of h.   One compact way to describe the effects of f is to 
think of the left bits as binary codes for numbers in Z8.  To be specific we still code each blue dot with a 
zero, but we code a pink dot in the top level as a one, a pink dot in the middle level as a two, a pink dot in 
the bottom level as a one.  We then add these to code the left side bits, giving a number in Z8.  A similar 
remark applies to the right side bits.  For now we ignore the middle dot in the top row and focus only on 
patterns where this dot is blue.  Since we only need to consider one middle bit, we can simply use the 
letter b to name this bit.   Thus we can code any such pattern as a pair (a, c) from Z8Z8.  

Example  Decoding the (6,5), gives (24, 14),  so (6,5) codes 001 10 111.  To obtain the 1 in the middle 
of the bottom row bottom we use 00111 (mod 2). 

Ac20  Decode the following triples as bit patterns: (0,0), (5,2), (2,3) 

Strategy For Solving Main Problem Part 2  Using this code, we can obtain a Z8 formula for calculating the 
effect of  f.  To do this, see what happens when you apply f to 0c.  See Ac22 for a more detailed hint.  Use 
a similar strategy to find a formula for calculating the effects of h.  Next find a formula for calculating the 
effects of nfmh.  Use this to give a formula which would yield a marble drop for any pattern in which the 
middle dot is blue. 

Notation  To distinguish between addition for the group D and addition for Z8, we use  for Z8 addition. 

Ac21  Find a Z8 formula for f(a, c).  Hint, look at f(0,c), ff(0,c), fff(0,c), etc.   Also find a Z8 for h(a, c).   

Ac22  Show fh = hf  

Formulas for f and h  Below we list the formulas for f and h along with a formula which can be derived 
from them for multiple use of f and h. 

f(a, c) = (a5, c)     h(a, c) = (a,  c3)       (nfmh)(a, c) = (a5n, c3m) 

Using f and h   Using (nfmh)(0, 0) = (5n, 3m), we determine how to obtain any pattern.  For example, to 
obtain 000 11 100, first code it as (6, 2) and then solve the Z8. equations need 5n = 6 and 3m = 2.  This 
gives n = 6 and m = 6, so we can use 6f6h.  Latter we will see that fewer marble drops could be used.  

Ac23  Tell how you could make each of the patterns below using marble drops only f and h. 

100 11 111        001 10 001       100 10 001       000 00 101 

Re20 (0,0): 000 00 000  (5,2): 100 01 100  (2,3): 001 11 010 

Re21  f(0,c) = (5,c), f(5,c) = (2,c), f(2,c) = (7,c), f(7,c) = (4,c), f(4,c) = (1,c), f(1,c) = (6,c), f(6,c) = (3,c), f(3,c) = (0,c).  
Observe that for each aZ8 we have f(a,c) = (a5, c).  Starting with (a, 0) and applying h, the second member of the pairs 
becomes 3, 6, 1, 4, 7, 2, 5, 0.  Thus h(a, c) = (a, c3) 

Re22   (hf)(a, c) = f(a, c3) = (a5, c3) = h(a5, c) = (fh)(a, c), so fh = hf. 

Re23  3f2h, 2f7h, 7f5h, 4f4h.   
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Ac24  Use (nfmh)(0,0) = (5n, 3m) to show that ((5a)f(3c)h)(000) = (a, c). 

The Remaining Patterns  In order to examine the patterns for which the middle dot in the top row is pink 
we extend the code to a triple (a, b, c) where a and c are as before and b is 0 or 1 depending on whether  
this dot is blue or pink.  Since g(0,0,0) = (6,1,0) we can obtain any pattern in which the top middle dot is 
pink by using g and then using only combinations of f and h.  

Ac25  Write a formula for (gnfmh)(0,0,0) 

Remark  Ac24 shows how to obtain any element in P of the form a0c.  Use the result from Ac25 to give a 
formula for obtaining a1c from 000.  We need 5n6 = a & 3m = c.  Thus n = 5a2 & m = 3c.    

This gives (g(5a2)f(3c)hg)(0,0,0) = (a,1,c) 

Solution to Main Problem Parts 1 and 2.  These activities give the formulas below, which show at least 
one way to obtain any of the 128 patterns of the form (a, b, c), so by the earlier result in Section 0 the 128 
pattern for which the mod 2 sum of the bits in levels 1 and 3 are exactly the patterns in P.  This solve parts 
1 and 2 of the main problem.  

((5a)f(3c)h)(0,0,0) = (a,0,c).            ((5a2)f(3c)hg)(0,0,0) = (a,1,c) 

Remark  The above formula does not use g to obtain patterns of the form (a,0,c). For example, it uses 
6f6h to produce (6,0,2).  Since 2g(000) = (602), 6f6h is clearly not the smallest number of drops 
needed to make (6,0,2).  Likewise this formula use 6f6hg to produce (4,1,2), which could be produced 
using 3g.  The next section explores this further. 

Formula for g  If the top middle is 0 and the left middle is 0 the g changes the left middle to 2 and adds 4 
to the bottom left, thus g(a,0,c) = (a6, 1, c).  If the top middle is 0 and the left middle is 2 the g changes 
the left middle to 0 and leaves the bottom left the same, thus g(a,0,c) = (a6, 1, c).   Similar reasoning 
yield formulas involving. 

g(a,0,c) = (a6, 1, c)  g(a,1,c) = (a, 0, c2)  2g(a, b, c) = (a6, b, c2). 

Remark  Since (6f6h)(a, b, c) = (a6, b, c2), we have 2g = 6f6h.  Given this result, it is easy to see 
why 3g give the same result as g6f6h.  

Results About D  The rest of this section uses the formula for marble drops to derives the same results 
about D as in we derived in Section 1.  From the formulas for f and h it is easy to see that ôf = 8 & ôh = 8.  
The formula for 2g shows that ôg = 8.  Since 8f = 0, 7f is the inverse of f.  Likewise h and g have 7h and 
7g as inverses so D is a group.  We can also show that  D is abelian. We have already shown fh = hf.  
The cases below show fg = gf, and the proof of hg = gh is similar. 

(fg)(a,0,c) = g(a5, 0, c) = (a3, 1, c) = f(a6, 1, c) = (gf)(a,0,c) 

(fg)(a,1,c)g(a5, 1, c) = (a5, 0, c2)f(a, 0, c)(gf)(a,1,c) 

Ac26  Using 2g6f6h, show that 2f2g2h = 0. 

Re24  nfmh(0, 0) = (a, c)  (5n, 3m) = (a, c)  a = 5n & c = 3m  n = 5a & m = 3c  

Re25  (gnfmhg)(000) = g(6, 0, 0) = (5n6, 1, 3m) 

Re26  Since 2g = 6f6h, 2g2f2h = 6f6h2f2h.  Now use the fact that D is abelian and that 8f = 0 and 8h = 0. 



 7

SECTION 3  THE MINIMUM NUMBER OF DROPS FOR A PATTERN  

Normal Names for Elements of D  For n, k, mZ, we let the triple [n, k, m] denote the sequence of n 
drops thru the left hole, k drops thru the middle hole, m drops thru the right hole.  This triple will also be 
used to denote the element nfkgmh of D.  While different triples always denote different sequences of 
marble drops, each element of D can be named by many different triples.  When n, m, kZ8 we call the 
triple [n, m, k] a normal name.  Since ôf = ôg = ôh = 8, a minimal sequence of marble drops for obtaining 
a pattern will have a normal name.  

Ac30   The top down strategy gives the 8 marble drops [1, 0, 7] to produce 10 100 110.  Use 6h = 2f2g 
to find a way to obtain x involving only 6 drops. Find 2 other normal names for d.. Find 4 normal names 
for the element that produces 101 11 011, for 001 11 010. 

Alternate Normal Names  The idea from Ac30 allows us to find 4 normal names for any element of D.  
We now develop further results about the structure of D which allow us to prove that each element of D 
has exactly 4 normal name, and hence solve part 3 of the main problem. 

Notation  d denotes the subgroup generated by d. 

Remark  This section depends on many of the results from Sections 1 and 2.  In particular it depends on 
the following information about D. 

 D is an abelian group with Dfgh, but this sum is not direct. 

 Each of f, g, h has order 8, and furthermore 2f2g2h = 0. 

Ac31  Show that fh is direct and thus has exactly 64 elements.         

A Generator of Order 2  Let e = fgh.  By the preceding observation 2e = 0.  Furthermore g = 7fe7h, 
so Dfeh.  

Structure Claim  D = feh, so ôD = 128. 

Proof  By Ac31, fh{0}.  Since e = {0, e} and e changes bit b, but neither f nor h change bit b, 
ef{0} and eh{0}.  

Note  By what we have shown, D is isomorphic to Z8Z2Z8.  

Claim   Let denote the map from D to P defined by  d = d(000).     is a bijection .  

Proof  By definition of P and ,  maps D onto P.  To show that  is 1 to 1, assume d1 = d2 for some d1, 
d2D.  This gives d1(000) = d2(000).   Application of d gives (dd1)(000) = 000.  Since 0 is the only 
element of D that maps 000 to 000, dd1 = 0, and hence d1 = d.  Thus  is a bijection.  

Claim  Each element of D has exactly 4 normal names. 

Proof  Since each triple from Z8Z8Z8 is a normal name, altogether there are 512 normal names.  Using 
2f2h2g = 0, we have shown in both Sections 1 and 2 that each element of D has at least 4 normal 
names.  Since ôD = 128 this gives exactly 4 normal names for each element of D. Re30  d = f7h = fh6h = 
fh2f2g = 3f2gh     [3, 2, 1]       6 drops 
           d = 3f2gh(2f2g2h) = 5f4g3h             [5, 4, 3]     12 drops 
           d = 5f4g3h(2f2g2h) = 7f6g5h           [7, 6, 5]     18 drops 

For 10111011:   [3, 4, 1]   [5, 6, 3]   [7, 0, 5]   [1, 2, 7].           For 00111010:   [2, 0, 1]   [4, 2, 3]   [6, 4, 5]   [0, 6, 7] 

Re31  None of the elements of h change any of the left gates.  0 is the only such element of f and hence the only element of 
f that belongs to h.  A similar argument shows that 0 is the only element of h that belongs to f.  Since f and h each 
have 8 elements there are 64 elements fh, namely any element of the form nfmh with n, mZ8.   
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Name Sizes  Let {n, k, m} = nkm in Z.  We call this the names size of [n, k, m]. A minimal name for 
an element of D is one with the minimal size.  Clearly only a normal name can be a minimal one. 

Example  Let d = [7, 3, 4].  Since 2e = 0, d = d2e = 9f5g6h.  Since 8f = 0, d = [1, 5, 6].  Adding 2e 
again gives d = [3, 7, 0], and once more gives d = [5, 1, 2].  The minimal name of this element is [5, 1, 2], 
and listing its normal names in order of size we have: [5, 1, 2], [3, 7, 0], [1, 5, 6], [7, 3, 4]; with sizes 8, 
10, 12, 14.  Since it is always possible to drop 8 more marbles without changing a pattern the possible 
names sizes for d are all even numbers greater than 6.   

Example  If d = [7, 1, 1] its normal names are [1, 3, 3], [7, 1, 1], [3, 5, 5], [5, 7, 7]; with sizes 7, 9, 13, 19.  
Since it is always possible to drop 8 more marbles without changing there are names of size 15 and 17.  
Continued use of 8 drops with those of sizes 13, 15, 17, 19 gives names sizes 21, 23, 25, 27.  Thus d has 
name sizes of 7 and 9 and all odd numbers greater than 11.   

Ac32 List the normal names and their sizes in order of size for each of the elements of D given below.  
Also give all possible name sizes.   (1) 3f5g1h   (2) 2f4g5h   (3) 3f6g2h   (4) 5f4g6h 

Reduced Names  Let min[n, k, m], mid[n, k, m], max[n, k, m] be the values of n, m, k in order of size.  
For example, min[5, 1, 3] = 1, mid[5, 1, 3] = 3, max[5, 1, 3] = 5. We call a name [n, k, m] reduced if is 
satisfies condition below. 

min[n, k, m] < 2  &  mid[n, k, m] < 4  &  max[n, k, m] < 6  

Claim  [n, k, m] is a minimal name   [n, k, m] is reduced  

Proof  We first use the top down strategy to show that each element d of D has a reduced name.  This 
strategy gives a reduced name except when the 2nd and 3rd stages involve 6 drops thru the same hole H.  
In this case the other holes were each used at most once.  Replacing  the 6 drops thru H with 2 drops thru 
each of the other 2 holes will give a name with a 1or 0 for hole H and 3 or less for the other holes.  We 
next show that a reduced name [n, m, k] is minimal.  Consider the five different ways a [n, m, k] may be a 
reduced name, observing that in each case the other normal names have larger sizes.  Let s = nkm.  
While not part of the proof we also list all possible name sizes in relation to the minimal size s.  

min   mid   max Normal Name Sizes Possible Name Sizes 
{0, 1} {2, 3} {4, 5} s, s2, s4,  s6 s2j 
{0, 1} {2, 3} {2, 3} s, s2, s6,  s12 s, s2, s62j 
{0, 1} {0, 1} {4, 5} s, s4, s6,  s10 s, s42j 
{0, 1} {0, 1} {2, 3} s, s6, s10, s12 s, s2, s62j 
{0, 1} {0, 1} {0, 1} s, s6, s12, s18 s, s6, s8, s122j 

 
Solution to Parts 3 and 4 of The Main Problem  One way to solve part 3 of the main problem is to use the 
variation of the top down strategy, as indicated in the proof above.  This solution does not allow us to 
specify the number of drops needed without first making some marble drops.  To solve part 3 without 
trying any marble drops, recall from Section 2 the 4 normal names for d if d(000) = (a, b, c).  The last of 
these is clearly not reduced, so check the others until you find one which is reduced. 

(2b5a, b, 3c) = (2b5a2, b2, 3c2) = (2b5a4, b4, 3c4) = (2b5a4, b6, 3c6) 

To solve part 4 just note the list of possible name sizes in the response to Ac32. 

Re32 Normal Names Their Sizes Possible Name Sizes 
 [3, 5, 1], [1, 3, 7], [7, 1, 5], [5, 7, 3] 9, 11, 13, 15 92j 
 [0, 2, 3], [6, 0, 1], [2, 4, 5], [4, 6, 7] 5, 7, 11, 17 5, 7,   112j 
 [1, 4, 0], [5, 0, 4], [3, 6, 2], [7, 2, 6] 5, 9, 11, 15 5,      92j 
 [1, 0, 2], [3, 2, 4], [7, 6, 0], [7, 6, 0] 3, 9, 13, 15 3, 6     92j 
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EXERCISES AND PROBLEMS FOR ALL THREE SECTIONS 

Ex1  Represent the following as ordered triples from Z8Z2Z8.  Give minimal way to obtain each.  

101 01 011    100 10 100    001 00 010    100 11 001   010 11 100   110 10 010   111 00  111 

Ex2  The following ordered triples 305, 502, 203, 713, 416, 311, 605, 517 represent which patterns.  Give 
the minimal way to obtain each of these. 

Ex3  (gnf)000 = (a,1,0) where a = 5n6.   Show in detail how to solve this equation to obtain n = 5a2.  

Ex4  Represent each element below the form nfkemg, where n, mZ8 and kZ2.  

3f6g2h     5f4g6h     3f5gh     fgh     2f4g6h     0 

Prove that each element of D has a unique name of that form.  Prove that (nfkemg) = [n, k, m] gives 
an isomorphism  from D onto Z8Z2Z8.  

Ex5  Let nfkgmh be a normal name of some d in D.  This name is called maximal if it is the normal 
name of d with the largest size.  Let p, q, r be the values of n, m, k with p  q  r.  Show that for the 
maximal name p  2, q  4, r  6.   

Ex6  Let abcP and d(000) = abc.  What is d(abc)?  If d = [n, k, m], what is a normal name for d.  
Either prove or give a counterexample to the following claim.  

[n, k, m] is the maximal normal name for d      (n, m, k) is the minimal name for d 

Ex7  Let abc, pqrP.  Find d such that d(abc) = pqr. 

Supplementary Problem 2  Let yP.  Investigate which patterns can be obtained by application of marble 
drops D to y, and how they can be obtained. 

  
An1  107, 700, 001, 302, 212, 314, 416, 111      505, 300, 003, 706, 416, 114, 612, 713  
 
An2  101    100    001    111    010    111    001    111  
          10      01      11      11      01      10      10      01 
         011    100    010    100    111    010    111    111 
 
      707      106      201      511      512      112      607      315 
 
An3     5n6 = a 

5n62 = a2 
5n = a2 
5(5n) = 5(a2) 
(55)n = 5a52 
n = 5a2 
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APPENDIX: DECOMPOSITION THEOREM FOR ABELIAN PGROUPS  

Notation   Let D be any additive abelian group.  B denotes the subgroup generated by a set B of 
elements in D.  ôB is the order of B.  b is an abbreviation for {b}, and ôb is the order of b. 
The symbol  is brief for  ‘is isomorphic to’. 

Perspective  The main text uses an abelian group D to analyze some questions about the ThinkaDot 
devise.  Details of this application are irrelevant to this appendix.  What is relevant is the use of 
Z8Z8Z8 to name elements of D and the conditions on D indicated below.   

(1)  ôD128 (2)  D{f, g, h}  (3)  ôfôgôh8 (4)  2f2g2h0 

These conditions can be used to show that each element of D can be represented in the form mfngie, 
where e = fgh and m, nZ8 & iZ2.  Since there are exactly 128 such representations, each element of 
D has a unique representation of this form.  Thus D = fge, i.e. 

D  Z8Z8Z2. 

My observation that Z8Z8Z8 was the natural way to name marble drops but that each element of D had  
exactly 4 such names suggested the morphism  below.  Since ô(Z8Z8Z8) > ôD,   is not an 
isomorphism.  In fact by (2) and (4), kernel(){[0, 0, 0], [2, 2, 2], [4, 4, 4], [6, 6, 6]}. 

    The map :Z8Z8Z8  D, where [m, n, j] = mfngjh, is a morphism onto D.  (see Exercise 0b).

Since D is isomorphic to Z8Z8Z2 the existence of a morphism from Z8Z8Z8  D is apparent 
without this observation.  However it was this specific morphism that provided me a new perspective on 
the fundamental decomposition of abelian groups.  Before turning to the proof this suggested, we will 
look at some examples. The first example illustrates that conditions like (1), (2), (3) imply some 
additional condition on generators, such as (4).  However this example might suggest that they uniquely 
determine such a condition.  Further examples are give a fuller perspective.  

Suggestion  Each example gives some conditions on an abelian group D and uses the generator conditions 
to indicate representations for elements of D.  These representations suggest a morphism  from a direct 
sum of cyclic groups onto D.  We denote the kernel of  as K.  The example then show how to use K to 
find a set of generators with lower combined order than the ones given in the conditions.  Read the 
conditions and try to work out some the details before reading the rest of the example. 

Example 1  Conditions: (1)  ôD16 (2)  D{f, g}  (3)  ôf8 & ôg4 

Sketch  We now show that these conditions imply (4) 4f2g = 0 and letting e = 2fg that D = fe. This 
can be sketched as follows.  Elements of D are of the form mfng with mZ8 and nZ4. Use redundancy 
to show 0 has a nontrivial representation.  Use a morphism from Z8Z4  D to find it.  

Details  By (1) and (2) every element of D has a representation of the form mfng with mZ8 and nZ4.  
Since there are 32 representations of this form, some element has more than one such representation, and 
this means 0 has non-trivial a representation (one other than 0f 0g).  Thus we must have some condition 
like (4) from the think-a-dot situation which allowed us to find a generator of smaller order. 

The map :Z8Z4  D, where [m, n] = mfng is a morphism.  By (3) it is onto D.  K is not trivial so K 
has an element of order 2.  The only elements of order 2 are [4,0], [0,2], [4,2].   If [4,0]  was in the kernel 
then 4f = 0, contradicting (3).  Likewise [0,2]K.  Thus [4,2]K giving 4f2g = 0.  Letting e = 2fg, we 
have g = e6f.  Thus D = {f, e}.  Since there are exactly 16 representation mfne with mZ8 and nZ2,   

D = fe  Z8Z2. 
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Further examples shows that with like (1), (2), (3) always imply a the existence of a condition like (4).  
Exercise 1 shows that with only 2 generators such conditions uniquely D.  To illustrate a broader 
perspective the rest of the examples all involve more than 2 generators. 

Example 2  Conditions:   (1)  ôD = 128    (2)  D = {f, g , h}     (3)  ôf = 8 & ôg = 8 & ôh = 4 

By (2) and (3) each element of D has a representation of the form mfngkh with mZ8 , nZ8 , kZ4.  
As before 0 must have a non-trivial representation of the form mfngkh.  

Let  be the morphism from Z8Z8Z4 onto D, with [m, n, j] = mfngjh and kernel K.   

By (1), ôK = 2.  Thus K contains [0,0,0] and exactly one of {[4,4,2], [4,4,0], [4,0,2], [0,4,2]}.  

Case 1. [4,4,2]K.  Letting e = 2f2gh, gives ôe = 2, h = e6f6g, D = {f, g, d}.  There are exactly 128 
elements of the form mfngke, with mZ8, nZ8, kZ2. Thus  D  Z8Z8Z2.    

Case 2. [4,4,0]K.  With e = fg: g = e7f, D = {f, h, e}.  Since [2,2,0]K, ôe = 4, D  Z8Z4Z4.  

Cases 3 and 4.  See Exercise 2. 

Comment  In Examples 1 and 2 the generator conditions suggested twice as many names as elements.  In 
any such example the order of the kernel of the map from the naming group to D is 21, and we call say 
that the name generation excess is 1.  In such cases the non-trivial element of K can be use to find a 
generator set for D with a no excess of names.  In the next example the order of the kernel of the map 
from the naming group to D is 22, and we call say that the name generation excess is 2.  

Example 3  Conditions: (1)  ôD = 128 (2)  D = {f, g , h}  (3)  ôf = 8 & ôg = 8 & ôh = 8 

Let  be the morphism from Z8Z8Z8 onto D, with [m, n, j] = mfngjh and kernel K.   

By (1), K has a element of order 2.  Thus K contains at least one of {[4,4,4], [4,4,0], [4,0,4], [0,4,4]}.  

Case 1. [4,4,4]K.  Letting e = fgh, we have h = e7f7g, D = {f, g, e}, 4e = 0.  Since D  {f, g}, 
e  0.  Thus ôe = 2 or ôe = 4.  ôe = 2  D  Z8Z8Z2.  If ôe = 4 we have the situation of Example 2. 

Case 2. [4,4,0]K.  Let e = fg, giving g = e7f, D = {f, h, e}.  Since 4e = 0 & e0, ôe = 2 or ôe = 4.  If 
ôe = 2 then D  Z8Z8Z2.  If ôe = 4 we have the situation of Example 2. 

Cases 3 and 4 follow by symmetry.  

Comment  In all the above cases the name excess of 2 suggests a morphism whose kernel has order 4.   
Using an element of order 2 from K, we find a generating set with smaller name generation excess.  
However you might observe that two possibilities occur.  We may find a generator set with 0 excess 
giving a direct product or we may only reduce the excess from 2 to 1.  In the latter case we had to refer to 
the preceding example to complete the decomposition. While this is all that is relevant to the proof of the 
decomposition theorem, we have included Exercise 3 to supply some additional perspective. The name 
generation excess is 3 in Example below.  We merely show how to find a generator set with smaller 
excess.  It might take 2 more applications of the process to find a decomposition.  

Example 4  Conditions: (1)  ôD = 128 (2)  D = {f, g , h}  (3)  ôf = 16 & ôg = 16 & ôh = 4 

Let  be the morphism from Z16Z16Z4 onto D, with [m, n, j] = mfngjh and kernel K.   

Case 1. [8,8,2]K.  For e = 4f4gh: h = e4f4g, D = {f, g, e}, 2e = 0.  If e = 0 then D = {f, g}, and 
the name generation excess is reduced to 1, with a further reduction giving D  Z16Z8. If ôe = 2 the 
excess is only reduced to 2.  Further reductions give either D  Z16Z8 or D  Z16Z4Z2.   

For more details on case 1, as well as an examination of the other cases see Exercise 4. 
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Remark  The lemma and theorem below show that the strategy used in these examples applies to any 
abelian group whose order is a power of 2.  It takes only a slight modification to prove the same results 
for any finite abelian pgroup.  Given these results it is easy to extend the result to any finite abelian 
groups.  Merely show in the standard fashion that any finite abelian group decomposes into a direct 
product of abelian pgroups. 

Notation  D denotes an abelian group with ôD a power of 2.   For a set B of generators of D, NGE(B) 
denotes name generating excess.  That is NGE(B) is the power of 2 obtained by dividing the product of 
the orders of the elements in B by the order of D. 

Lemma  If  B = D and NGE(B) > 0 then there is a C with C = D and NGE(C) < NGE(B). 

Prf(when B has 3 members)   Denote the elements of B as f, g, h, where 2a, 2b, 2c are the orders of f, g, h 
and notation is chosen so a  b c.  Note a, b, c{1, 2, 4, 8, ...}.   Let H = Z2aZ2b.Z2c,   

Let  be the morphism from H onto D: [m, n, k]  mfngkh., with kernel K   

Since ôH > ôD, there is an xK with ôx = 2.  Thus  x{[a, b, c], [a, b, 0], [a, 0, c], [0, b, c]}.    

In all cases but the second there must be an equation of the form c(mfngh) = 0.  Let e =  mfngh. 

h = mfnge        D = f, g, eôe  c  < 2c = ôh     NGE{f, g, e} < NGE{f, g, h} 

In the second case we have b(mfg) = 0,  and we let e = mfg.     

Prf(when B has k elements)  Other than for notation the proof is essentially the same.  Denote the 
elements of B as f1, ..., fk , where 2a1, ..., 2ak are their orders.   

Let H = H1...Hk, where Hi is the group of integers mod 2ai.   

Let  be the morphism from H onto D: [j1, ..., jk]  j1f1...jkfk., with kernel K   

Since ôH > ôD, there is an xK with ôx = 2.  x must be a tuple [t1, ..., tk] where each ti is either 0 or ai . 
and where at least 2 of the entries are not 0.   

Without loss of generality, suppose t1  is a1 and there is no smaller ai in x.  This gives an equation of the 
form:  a1(fim2f2…mkfk ) = 0.   Let e = fim2f2…mkfk ,  C = {e, f2, ..., fk}. 

f1 = e m2f2…mkfk  

D = C,  since B  C

ô(e)  a 1  < 2a1   ô (f1) 

NGE(C) < NGE(B)

Theorem  D is a direct sum of cyclic groups. 

Prf  Let D = B with NGE(B) as small as possible.  By the preceding lemma, NGE(B) = ôD.  Use the 
same H and  as in the proof of the lemma.  This gives an isomorphism from H onto D.  
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Exercises and Problems 

Exercise 0a   Show that the conditions below imply that each element of D can be uniquely represented in 
the form mfngie, where e = fgh and m, nZ8 & iZ2.

(1)  ôD128 (2)  D{f, g, h}  (3)  ôfôgôh8 (4)  2f2g2h0 

Exercise 0b   Show that the map :Z8Z8Z8  D, where [m, n, j] = mfngjh, is a morphism onto D. 

Exercise 1   Show the first set of conditions below imply ô(fg) = 4 and thus D  Z8Z4.  Also show that 
the second set implies D  Z8Z2 and that the third implies D  Z16.  Make some general observations 
about such groups when there are only 2 generators with orders that are powers of 2.  Consider some 
examples of groups with 3 generators whose orders are powers of 3. 

  First set of Conditions: (1a)  ôD = 32 (2a)  D = {f, g}  (3a)  ôf = 8 & ôg = 8 

  Second set of Conditions: (1b)  ôD = 16 (2b)  D = {f, g}  (3b)  ôf = 8 & ôg = 8 

  Third set of Conditions: (1c)  ôD = 16 (2c)  D = {f, g}  (3c)  ôf = 16 & ôg = 8 

Exercise 2  Do cases 3 and 4 of Example 2. 

Exercise 3  In Example 3 we know ôK = 4, but we only used the fact that K had an element of order 2. 
Show that either K = {[0,0,0], [0,4,4], [4,0,4], [4,4,0]} or K has an element of order 4.  Without reference 
to Example 3, show that first case implies D  Z8Z4Z4 and the second case implies D  Z8Z8Z2 . 

Exercise 3a  In Example 3 suppose K = {[0,0,0], [0,4,4] [4,0,4], [4,4,0]}, and hence D  Z8Z4Z4 .  Find 
elements f, g, h of order 8 that generate Z8Z4Z4 and that satisfy 4g4h = 0, 4f4h = 0, 4f+4g = 0. 

Exercise 3b  In Exercise 3 with K = {[0,0,0], [0,4,4] [4,0,4], [4,4,0]} we chose {h, gh, fh} as an 
independent  generating set for D.  Show that D = h3f3g)(5f+h).  Find some other choices of 
independent generating sets the form {h, a, b}. 

Exercise 3c  In Example 3 suppose [4,6,2]K.  Since K has an element of order 4, D  Z8Z8Z2 .  Find 
elements f, g, h of order 8 that generate Z8Z8Z2 and that satisfy 4f6g2h = 0. 

Exercise 3d  In Exercise 3c with K = {[0,0,0], [4,6,2] [0,4,4], [4,2,6]}.  We chose {f, g, 2f3gh} as an 
independent generating set.  Show that D = fg(2f+5g7h).  Give another such example. 
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Answer 0a  By (3) h = 7f7ge.  Thus by (2) D = {f, g, e}.   By (1) D  {f,g}, so h  7f7g. 
Thus e  0.  Thus by (4) ôe = 2.  By this and (3), each element of D can be represented in the form 
mfngie, where m, nZ8 & iZ2.  There are 128 such representations, so uniqueness follows by (1).

Answer 0b([m, n, j][a, b, c]) = [ma, nb, jc]                    where  is addition mod 8 

 = (ma)f, (nb)g, (jc)h  def of 

 = (mfngjh)(afbgch)  by condition (3) and commutivity 

 = [m, n, j][a, b, c]  def of 

Answer 1  By (1a) and (2a) elements of D can be represented in the form mfng with mZ8 and nZ8.   
The map :Z8Z8  D, where [m, n] = mfng is a morphism onto D.  By (1a) K is not trivial and thus 
has an element of order 2.  By (3a) neither [4,0] nor [0,4] is in K.  Thus [4, 4]K, giving 4f4g = 0.  Since 
[2,2]K, ô(fg) = 4.  Letting e = fg, g = e7f.  Thus D = {f, e}.  Since there are exactly 32 
representation of the form mfne with mZ8 and nZ4,  D = fe  Z8Z4. 

By (1b) and (2b) elements of D can be represented in the form mfng with mZ8 and nZ8.   The map 
:Z8Z8  D, where [m, n] = mfng is a morphism onto D.  By (1b), ôK = 4 and thus has an element 
of order 2.  By (3a) neither [4,0] nor [0,4] is in K.  Thus [4, 4] is the only element of K having order 2. 
This implies  K = [2,2] or K = [2,6].  Thus either ô(fg) = 2 or ô(f3g) = 2.  In the first case let e = fg.  
In the other case let e = f3g.  In either case D = {f, e}.  Since there are exactly 16 representation of the 
form mfne with mZ8 and nZ4,  D = fe  Z8Z2. 

The third set gives ôK = 8, with [8, 4] the only element of order 2 in K.  This implies K = mfor some 
m{1, 3, 5, 7}.  In any of these cases, gf, and hence D = f  Z16. 

In general consider conditions where m  n  k  2 and these numbers are powers of 2. 

 Conditions:   (1a)  ôD = m (2a)  D = {f, g}  (3a)  ôf = n & ôg = k 

If m = n then D  Zn .  If m>n D  Zn  Zj. where j = m/n.  Likewise for powers of 3 or any other prime. 

Answer 2    
Case 3. [4,0,2] = 2[2,0,1]kernel().  For e = 2fh; ôe = 2, h = e6f, D = {f, g, e}. Thus D  Z8Z8Z2.  

Case 4. [0,4,2] = 2[0,2,1]kernel().  For e = 2gh; ôe = 2, h = e6g, D = {f, g, e}. So D  Z8Z8Z2.  

Answer 3  Suppose K = {[0,0,0], [0,4,4] [4,0,4], [4,4,0]}.  Choosing egh & dfh gives D = {h, d, e}. 
Since 4e = 0 and 2e0 and 4d = 0 and 4e0, we have and ôd = 4 and ôe = 4.  Thus D  Z8Z4Z4 . 

Now suppose K has an element x of order 4, for instance [4, 6, 2]. Choosing e = 2f3gh we have 2e = 
4f6g2h = 0.  Since ôe = 2, D  Z8Z8Z2 .  This can be generalized for any x of order 4. x has no odd 
entries, and at least one of them is 2 or -2.  Thus either x or -x is of the form [2a, 2b, 2c] where at least 
one of a, b, c is 1.  Suppose c = 1.  Let e = afbgh.  ôe = 2 and D = {f, g, e}.  Similar results follow if 
a = 1 or b = 1. 

Answer 3a  Many possibilities, one being f = [1,0,0], g = [0,1,0], h = [6,5,1].  

Answer 3c  Many possibilities, one being f = [1,0,0], g = [7,0,1], h = [1,1,7].        

 


